The First Integral Method for Solving Exact Solution of GDNLSE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-spline Method for Solving Fredholm Integral Equations of the First ‎Kind

‎‎‎In this paper‎, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis.‎ The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. ‎The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

متن کامل

Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind

In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2018

ISSN: 2324-7991,2324-8009

DOI: 10.12677/aam.2018.74036